投稿

4月, 2023の投稿を表示しています

Translate

#20 Section 18 データを分割するビニング

イメージ
Section 17では、データに含まれていた時間の「ドリルダウン」、すなわち「年」から「年月」への「ドリルダウン」を行いましたが、このセクションでは、「 ドリルダウン 」するための数値を新たに作っていきます。 「商品」に属する「UnitPrice(単価)」を、顧客の特徴をよく表すように分割(これを「 ビニング 」と言います)する方法を身に付けましょう。 それらを実現するプログラムは下記の7つです。 ㊺ pd.cut( データ名[“列名”], 分割数, precision=□, right=True ) ㊻ pd.cut( データ名[“列名”], 分割数 ). value_counts() ㊼ pd.cut( データ名[“列名”], [数字1, 数字2, 数字3] ) ㊽ pd.cut( データ名[“列名”], [数字1, 数字2, 数字3]      , labels=[ラベル1, ラベル2, ラベル3] ) ■ まずは、 概要を理解したい方は、下記の 動画 (6分47秒) をご覧ください。   ■ PowerPo int (パワポ) でじっくりと理解したい方は、下記のスライドを参照してください。 Section 18 データを分割するビニング by @Cat_Taro   ■ 参考URL ●ビニングに関しては、Smart-Hintが運営している「データをビニング(ビン分割)する方法|cut」がとってもわかりやすかったので、参考にしてみてはいかがでしょうか。 https://smart-hint.com/python/cut/ ●フリーランスのサウンドクリエータ「パンダの中のパンダ」さんがやっている「【AIプログラミング】 ビニングでボストン住宅価格の回帰」が役に立つと思いますので、下記を参考にしてみてくださいね。 https://panda-clip.com/binnning-boston/

#19 Section 17 seabornでグラフ描画(2)

イメージ
それでは、データサイエンス・チュートリアル 第19回目、Section 17「seabornでグラフ描画(2)」を始めます。 このセクションでは、 OLAPキューブ の分析手法に従い、時間に関してドリルダウンを行い、データ分析を試みていきます。 また、それらの結果で説得力あるプレゼンをするために、 seaborn で作成したグラフを見栄えよくする方法を身に付けていきましょう。具体的には、seabornの日本語化、グラフの大きさを指定、軸の単位を整数にする、グラフをクールに表示する(ggplotライク)、グラフのタイトルを表示、 y軸の表示範囲を設定、グラフの画像を保存などを解説します。 Seabornの体裁を整えるプログラムを整理すると、下記のようになります。 今回、解説するプログラムは下記の7つです。あまり、応用することは無いので、そのまま覚えるか、コピペできるようにしておきましょう。   ㊳ !pip install japanize-matplotlib    import japanize_matplotlib  ㊴ plt.figure(figsize=(○, △), dpi=□)  ㊵ plt.gca().ticklabel_format(style='plain’,axis='y’)  ㊶ plt.style.use("ggplot")  ㊷ plt.title(“グラフタイトル")  ㊸ plt.ylim(最小値,最大値)  ㊹ from google.colab import files       plt.savefig(“画像ファイル名.jpg")       files.download("画像ファイル名.jpg") ■ まずは、 概要を理解したい方は、下記の 動画 (11分40秒) をご覧ください。 ■ PowerPoin t (パワポ) でじっくりと理解したい方は、右下のマーク「ページを新しいウインドウで開きます。」をクリックしてください。 Section 17 seabornでグラフ描画(2) by @Cat_Taro