投稿

ラベル(猫のタローのつぶやき)が付いた投稿を表示しています

このブログが書籍になりました! 第2弾!

『1st Step ビッグデータの読み込みとデータの確認』で作成した「id_pos4」、いわゆる「きれいなデータ」を用いて、データの見える化、およびレポーティング用(報告書・会議用資料)の集計を行っていきます。 グラフは、「seaborn」等を用いて、インパクトのあるグラフを少ないコードで描いていきます。グラフによるデータの見える化で、より深い洞察が得られることと思います。 グラフにするためのデータの前処理やグラフの不具合についても、よくある間違い実例で解説しています。 →  購入はこちら

データホライゾンとDeSCヘルスケア 医療データ目的外利用の疑い

DIAMOND online が、DeNAの医療データへの疑惑に関して、特集を組んでいます。 対象となった企業DeNAの連結子会社には、データホライゾンとDeSCヘルスケア(ディーエスシーヘルスケア)があり、 医療データの流れをまとめると、下記のようになっています。 自治体 → データホライゾン → DeSC → 保険会社、 製薬企業 DIAMOND onlineの特集記事を時系列で並べると、2023年12月に疑惑が浮上して、自治体の調査結果が明らかになった2月下旬にその結果と弁護士の意見を掲載しています。ちなみに、DeNAは 2023年12月の疑惑の記事を即座に否定しています。 ●2023年 12月18日 【スクープ】DeNAが医療データ「目的外利用」の疑惑浮上!提供自治体が調査へ ● 2024年2⽉28⽇ 【スクープ】DeNAが医療データの「第三者への有償提供」を提供⾃治体に認める︕⽬的外利⽤で個⼈情報保護法違反か ● 2024年2⽉29⽇ 【内部資料⼊⼿】DeNAが「⾃治体の医療データ」を⽣保にモーレツ営業︕営業資料に透ける不正の動機とは︖ ● 2024年3⽉1⽇ DeNAの医療データ有償提供は「個⼈情報保護法違反」か︖専⾨家が指摘する違法性とは 2024年 2⽉28⽇ の記事では、 DIAMOND onlineが自治体に取材し、自治体とデータホライゾンの委受託契約を入手したとのこと。 それによると、自治体とDeNAグループの最大の祖語、争点は、 自治体が データホライゾンに委託している業務は、「 住民の医療費負担の適正化等広く住民の福祉の向上に資する業務 」となっており、その 解釈の違い です。 ★ 自治体 →保険会社や製薬企業への有償提供について事前の説明が無かった。これらの有償提供は 契約範囲を逸脱 している。 ★ DeNAグループ → 「 住民の医療費負担の適正化等広く住民の福祉の向上に資する業務 」は、 保険会社や製薬企業への有償提供を含んでいる 。 自治体が保有している医療データは、 医療機関が 国民健康保険 の 保険者に提出する月ごとの診療報酬明細書( レセプト )のことで、 保険者は市町村と都道府県になっています ( 平成30年4月以降 )。この 国民健康保険 は、 職場の健康保険(健康保険組合や共済組合など)に加入している人や生活保護を受けて

医療ビッグデータ企業の過去・現在・未来 

イメージ
昨日 ポストした 医療ビッグデータ企業M&Aの記事の熱量が後を引いています…。チュートリアルの完成を急がなくてはならないのですが、 日本で企業が活用できる医療ビッグデータは、日本薬剤疫学会の健康・医療情報データベース活用委員会が毎年更新している「 日本で薬剤疫学研究に利用可能なデータベース 」で知ることができます。 なお、「日本で薬剤疫学研究に利用可能なデータベース」の分類は、下記の3つに分かれていますが、これは、データ収集元で分類しています。 例えば、「保険者ベース」は健康保険組合から、「医療機関ベース」は医療機関、「保険薬局ベース」は調剤薬局からデータの提供を受けています。 さて、最新のもので、昨日ポストした JMDC、メディカル・データ・ビジョン等の 医療ビッグデータ企業のデータベースを見てみましょう。 1.保険者ベース 総登録者数では JMDC が1位で、1,400万人。しかも、データ期間が2005年からと断トツで長期で、8年以上追跡可能な患者数が135万人と明記されていることから、データの質が良いことが推察されます。 2.医療機関ベース  総登録者数では、 MDV が1位で、4,042万人。JMDCは4位で1,700万人ですが、2,440万人の2位のリアルワールドデータ株式会社は2022年7月にJMDCの子会社になったので、単純に合計すると JMDCグループ が1位になります。 3.保険薬局ベース 総登録者数では、1位が外資の製薬企業サポート企業 IQVIA で、9,078万人。JMDCは4位で1,700万人と大分水をあけられているようです。 これは、医療ビッグデータ(「リアルワールドデータ/RWD」とも言います)の登場が、先ずは、保険者ベースのデータでJMDC、次いで保険薬局ベースのデータでJMIRI(現インテージグループ)、IMS(現IQVIA)、なかなかデータが集まらなくて普及に時間がかかりましたが、病院のDPCデータで メディカル・データ・ビジョンが登場したという歴史的背景が、未だに影響していると思います。下図を参照してください。 データビジネス は、収集に時間やコストがかかるため、 参入する企業が限られます 。また、一度参入した企業は、初期投資を回収するために自分の強みを活かさなくてはならないので、顧客(この場合は製薬企業)に ベンダーロ

医療ビッグデータ 第2章はじまる

イメージ
異常な暑さに見舞われている今年の夏。 医療ビッグデータ企業にも熱い動きが続出しています。 猫のタローが育った医療ビッグデータの業界、思い入れ深く、つぶやきます。 ************ ************ ◆8月25日  SBIホールディングス が メディカル・データ・ビジョン (MDV)株を追加取得(議決権ベースで最大5.35%追加取得)と発表。 SBIホールディングスとMDVは 2020年11月10日 に資本業務提携契約を締結。2023年6月3日現在、MDVの株式を940万8814株(議決権比率 24.63%)保有していた。 https://www.mixonline.jp/tabid55.html?artid=75242 ************ ************ ◆9月6日  NTTドコモ が、 インテージホールディングス の連結子会社化を目的とした株式公開買付け(TOB)を実施すると発表。 2012年4月 には両社の合弁会社として株式会社ドコモ・インサイトマーケティング(以下「DIM」といいます。)を設立していた。 https://www.nihon-ma.co.jp/news/20230906_9432-20/ ************ ************ ◆9月8日  オムロン 、医療データサービスの JMDC をTOBで子会社化(取得価格は最大で855億円)。JMDCはTOBに賛同し、同社の東証プライム市場への上場は維持される。 オムロンは 2022年2月 にJMDCと資本業務提携。これに伴い、オムロンは1120億円を投じてノーリツ鋼機からJMDCの株式33%(当時)を取得し、持ち分法適用関連会社としていた。 https://maonline.jp/news/20230908e ************ ************ これらのM&Aの目的は、明確で、いずれも新たなサービスを生み出すためのものです。そのため、いきなりのM&Aではなく、事前の準備がありました。 SBIホールディングス と メディカル・データ・ビジョン は、 医療ビッグデータを活用した金融およびヘルスケア分野での新商品・サービス開発などの加速。 NTTドコモ と インテージホールディングス は、 インテージHDが培ってきたデータ集計・分析・可視化などのスキ

カスタマーサクセスとデータ分析について

みなさん、お正月休み、どのように過ごしていますか? 猫のタローは、チュートリアルの動画作成をちょっとお休みして、TVや Prime Videoの合間に、溜まってしまった Chrome「リーディングリスト」を読んでいます。 その中で、ちょっと古いですが、ITmedia マーケティングの「 カスタマーサクセスはマーケティングや営業をどう変えるのか Gainsight日本法人代表に聞く 」がありました。 ポイントは、下記の点です。 ********** これまで、カスタマーサクセス部門は 解約防止 のための専門組織という印象があった。つまり、いかにして顧客を辞めさせないかに重点をおいていたのである。 だが、解約を希望する顧客に対して、あの手この手で何とか顧客をつなぎ止めるだけでは「顧客の成功」とは正反対の活動だと言わざるを得ない。 もともとやめたかったサービスを 渋々継続してもらっても 、それで顧客が成果を出せなければ ますます離脱意向は強まる 。 結果、企業側も売り上げを落とすことになる。これは買う側にとっても売る側にとっても 不幸な結末 だ。 ********** 確かに、前世では、顧客の求めに応じて、 チャーンレート (churn rate/解約率)の推移等を算出していたのですが、それって、ビジネスにとって、あまり効果が無かったのですね。 データ分析をする場合は、ビジネス上の目的に沿うことが大切だという原点を思い出させてくれる文章でした。 ビジネスの目的を理解するために、どのようなビジネスで、どのようにデータサイエンスが使われているかを知ることが大切だと思いますので、今年は、このあたりの解説も増やしていきたいと思います。 あと2回ほどで、1st STEP「ビッグデータの読み込みとデータの確認」も終了する予定ですので、 2nd STEP「集計とグラフ描画」との間に、いくつかのエピソードを入れて行こうと思っています。応援、お願いします!

リスキリングの意味

イメージ
 「NPO法人しごとのみらい」の竹内さんの記事「 リスキリング?本当に大切なのって、そこでしたっけ? 」を読みました。 以下、主な個所を抜粋します。 ●企業の中でリスキリングというなら、社員が学んだスキルを存分に生かせるように、 組織文化も変えていく必要 があるのでしょう。 ●本当の意味で学んだスキルを仕事に生かすためには、「 仕事で生かす努力 」も必要ではないかと思います。 ●実績とか、人柄とか、頼まれたら逃げずにやり切るところとか、スキルと同時に、 スキル以外のところも高めていく必要 があるんじゃないかな、と思います。 猫のタローは、この記事に大いに 賛同 します。 このブログは、データサイエンティストが身に付けるべき最小限のPythonプログラムを解説していますが、それは、プログラミング・スキルを身に付けることが最終目的ではありません。 プログラミングを体験することによって「 データ思考 」を身に付け、 ビジネス力を向上させ 、 キャリアアップ して 様々な体験 をしていくことで、自分の 人生を充実 させることの手助けができればと考えて執筆しています。更新が滞ることもありますが、「1st STEP ビッグデータの読み込みとデータの確認」、「2nd STEP 集計とグラフ描画」を完成させたいと思いますので、これからもよろしくお願いします。 動画や資料を作ることで、猫のタロー自身も日々成長を感じています!