投稿

10月, 2023の投稿を表示しています

Translate

#29 Section 27 ピボットテーブル(1)

イメージ
データを可視化する方法は、グラフだけではありません。 2つのカテゴリのデータを同時に集計した結果を示す表を クロス集計表 と言いますが、このクロス集計表によって、様々な考察を得ることができます。 このセクションでは、クロス集計表を作成する ピボットテーブル を解説します。 75  pd.pivot_table(データ名, index=“列名1”, columns=“列名2”,             , values=“列名3”, aggfunc=’関数’, 他の引数) 75 のプログラムの引数を何度か他の列名と書き換えたり、省略したりして、ピボットテーブルによるクロス集計表の作り方を身に付けていきましょう。 ■ まずは、概要を理解したい方は、下記の 動画 (10分32秒)をご覧ください。 ■ PowerPoint(パワポ) でじっくりと理解したい方は、下記のスライドを参照してください。 Section 27 ピボットテーブル(1) by @Cat_Taro ■ 参考URL ●株式会社Spotの「 Pandasでピボットテーブルを手軽に作成するpivot_table関数の使い方 」 https://deepage.net/features/pandas-pivot.html

#28 Section 26 円グラフ

イメージ
このセクションでは、 円グラフ の描き方を解説します。 seaborn は、より美しく、より簡単にグラフ描画を実現してくれるライブラリですが、現時点では 円グラフを描く機能はありません 。しかし、日本ではプレゼン等で、市場シェアを円グラフで見せる機会が多いため、ここでは、「 Plotly 」というライブラリーを使います。 それらを実現するプログラムは下記の2つです。 73  import plotly.express as px 74  px.pie(データ名, values=“分類したい列名”, names=“値の列名”) ライブラリー「 Plotly 」は、円グラフを描くことができるだけでなく、 インタラクティブなグラフ を描けることが最大の特徴です。動画の後半で、そのインタラクティブ性を確認してみてください。 また、「 Dash 」 を使うと「Plotly」で可視化した インタラクティブなプロットをWeb上で操作 することができます。コラボを使わなくても、ホームページで「Plotly」を使うことができるというわけです。この解説は下記のURLを参照してください(英語ですが、頑張ってみてください)。 ■ まずは、概要を理解したい方は、下記の 動画 (8分9秒)をご覧ください。 ■ PowerPoint(パワポ) でじっくりと理解したい方は、下記のスライドを参照してください。 Section 26 円グラフ by @Cat_Taro ■ 参考URL ●様々な円グラフの描き方   【plotlyチュートリアル】 第4回円グラフ     https://cafe-mickey.com/python/plotly-tutorial-4/ ●「Plotly」全体の公式ドキュメント   Plotly Open Source Graphing Library for Python    https://plotly.com/python/