投稿

Section 6 列の参照

イメージ
データサイエンス体験動画「データサイエンス チュートリアル 猫のタロー編」の第8回目は、「 列の参照 」を説明します。 Section 3と4では、データ全体を確認することを習得しましたが、ここでは、特定の列を選んで、確認する方法を解説します。  ⑪ データ名[“列名”]  ⑪' データ名.列名  ⑫ データ名[[“列名”]]  ⑫‘ データ名[[“列名1”], [“列名2”]]  ⑬ データ名[データ名[“列名”] > 数字]  ⑥’ len(データ名[データ名[“列名"] > 1000]) ⑬の 比較演算子 を使った方法は、データを確認するだけではなく、データの持つ数値の特徴をざっくりと見るうえで、重宝しますのでしっかりと身に付けましょう。 今回も、動画を見てから、 PowerPoint(パワポ)の資料を見た方がわかりやすいので、まずは動画から! ■ 動画で、PC操作画面を見ながら概要を理解したい方は、下記の 動画 (8分0秒)をご覧ください。 ■ PowerPoint(パワポ) の資料をじっくりと読み進めてください。 Section 6 列の参照 by @Cat_Taro

Section 5 データ型

イメージ
データサイエンス体験動画「データサイエンス チュートリアル 猫のタロー編」の第7回目は、「 データ型 」を説明します。 Pandas では、各列ごとにそれぞれデータ型を保持していて、データ型それぞれに合った処理方法が決められています。このデータ型を確認する方法と、データを読み込む時にデータ型を修正する方法を解説します。  ⑨ 「データ名」.dtypes  ⑩ pd.read_excel("データのある場所",  dtype = {"カラム名": データ型}) 今回は、動画を見てから、 PowerPoint(パワポ)の資料を見た方がわかりやすいので、まずは動画から! ■ 動画で、PC操作画面を見ながら概要を理解したい方は、下記の 動画 (5分37秒)をご覧ください。 ■ PowerPoint(パワポ) の資料をじっくりと読み進めてください。 Section 5 データ型 by @Cat_Taro 【参考資料】 ●Excelデータの読み込み https://www.yutaka-note.com/entry/pandas_read_excel_1 ●pandasでcsv/tsvファイル読み込み https://note.nkmk.me/python-pandas-read-csv-tsv/

Section 4 読み込んだデータの確認(2)

イメージ
データサイエンス体験動画「データサイエンス チュートリアル 猫のタロー編」の第6回目は、読み込んだデータの確認(2)を説明します。今回は、下記のプログラムを使って、データのサイズを取得する方法を解説します。  ⑥ len(データ名.index)  ⑦ データ名["カラム名"]  ⑧ データ名["カラム名"].unique() ※ 「カラム名」は、「列名 」 と同じことです。混在してしまって、すみません! また、理解を深めるために、下記の知識を身に付けていきます。 ●Pandasのデータ構造「 Series 」と「 DataFrame 」 ●データの個数の数え方:「 のべ 」と「 ユニーク 」の違い ■ 動画を見る前に、 下記の PowerPoint(パワポ) の資料を読み進めてください。 Section 4 読み込んだデータの確認(2) by @Cat_Taro ■ 動画で、PC操作画面を見ながら復習をしたい方は、下記の 動画 (6分47秒)をご覧ください。 【参考資料】 ●SeriesとDataFrameの変換 https://note.nkmk.me/python-pandas-dataframe-series-conversion/

Section 3 読み込んだデータの確認(1)

イメージ
データサイエンス体験動画「データサイエンス チュートリアル 猫のタロー編」の第5回目は、読み込んだデータの確認(1)を説明します。まずは、データの 目視確認 です。 読み込んだデータ、処理をしたデータは必ず目視確認するようにしましょう!正確な分析をする上での基本です。 データを目視確認する主な方法は、次の3つです。  ③ 「データ名」 を記入して、実行。    → この場合は、最初と最後の5行が表示されます。  ④ 「データ名」.head() を記入して、実行。    → この場合は最初の5行が表示されます。()内に任意の数字を      半角で記入すると、その行数が表示されます。  ⑤ 「データ名」.tail() を記入して、実行。    → この場合は最後の5行が表示されます。()内に任意の数字を      半角で記入すると、その行数が表示されます。 ■ 動画を見る前に、 下記の PowerPoint(パワポ) の資料を読み進めてください。 Section 3 読み込んだデータの確認(1) by @Cat_Taro ■ 動画で、PC操作画面を見ながら復習をしたい方は、下記の 動画 (7分8秒)をご覧ください。 ちなみに、この「Online Retail.xlsx」のデータ概要は、下記を参照してください。 https://archive.ics.uci.edu/ml/datasets/online+retail#

Section 2 ライブラリの選択とデータの読み込み

イメージ
#4は、「 ライブラリの選択とデータの読み込み」を説明します。 #4では、いよいよそこそこ大きなデータ(約54万行)を読み込んでいきます。前回G oogleドライブ に保存したデータを、 コラボ で読み込んで活用していきます。 ■ 動画を見る前に、 下記の PowerPoint(パワポ) の資料を読み進めてください。 Section 2 ライブラリの選択とデータの読み込み by @Cat_Taro パワポのスライドショーからリンクはたどれると思いますが、念のため、資料に出てきたリンクを記載しておきます。 ● 【超簡単】GoogleColabでGoogleドライブをマウント   https://kenko-keep.com/google-colab-mount/ ■ 動画で、PC操作画面を見ながら復習をしたい方は、下記の 動画 (4分22秒)をご覧ください。

【参考】Pythonの基礎を学ぶ教材

イメージ
 Pythonの基礎を学ぶイチオシの教材としては、下記の書籍があります。 Pythonの中で、データ分析や機械学習のプログラミングで最も使われるライブラリ(*1)である Pandasの開発者Wes McKinney による人気のテキストです。データ分析を行うための基本を網羅しており、すべてのサンプルコードはダウンロード可能で、Jupyter Notebook(ということはGoogel Colabでも可)で対話的に試し、実際に手を動かしながら知識を確実なものにすることが可能です。 ■  Pythonによるデータ分析入門 第2版 本文がp549もあり、カフェまで持ち歩くのは辛いので、気軽に勉強するには向かないのですが、しっかりと独学するためにはとても頼りになる本です。 また、東京大学 数理・情報教育研究センターが作成している無償の資料もあります。 ■  Pythonプログラミング入門 Googel Colabによるノートブック (プログラムを書いたり、その結果を表示する画面) の使い方 から、 Pythonの基礎 、 各種ライブラリ 、 機械学習 まで中級のデータサイエンティストになるにはこの資料で十分です。 ただし、上記の書籍、PDFはPythonの文法やライブラリの解説から始まりますので、データをハンドリングまでは、それなりの時間がかかります。 データ分析は、まずは データに触れる ところから始めるのが挫折しない秘訣だと思います。 英語の勉強も、文法から学ぶと途中でくじけてしまいますが、簡単な日常会話から学んで、実際に英語のネイティブと日常会話を楽しむことによって、ボキャブラリーや言い回しを増やしていく方が上達が早いのと同様です。 「Python実践データ分析100本ノック」は、ビジネスの現場でデータ分析を始める際に、最初のプログラムをどのように書いていくのかを実際のデータを用いて解説しています。ある程度、データ分析を経験した人向けなのですが、いきなり、この本の第一部「基礎編:データ加工」から始めてしまうのも、近道かもしれません。 先ずはこのテキストに書いてあるプログラムを理屈抜きに書いて、それを実行した結果が出たときは感動ものです。 ■  Python実践データ分析100本ノック 本当は、データの読み込み、そのデータがどのようなものかの確認、データの見える化などか

【参考】Pythonのインストール

イメージ
  (1) 色々な 業務の効率化 や Webプログラミング などの一般的なPythonプログラミングを基礎から使いたいという場合は、公式版のPythonをインストールします。 Python Japanが「Python環境構築ガイド」を公開しています。 ■  Python環境構築ガイド  https://www.python.jp/install/install.html (2) しかし、 データサイエンスでは、Anaconda経由でPythonをインストール してください。 ■  Anacondaのインストール     https://www.python.jp/install/anaconda/windows/install.html 科学技術計算などを中心とした、多くのモジュールやツールのコンパイル済みバイナリファイルを提供しており、簡単にPythonを利用する環境を構築できます。 Anaconda はPythonだけではなく、いろいろなユーティリティや他のプログラミング言語・ライブラリなども、パッケージ管理ツール Conda でインストールできます。curlなどの便利なユーティリティや、NvidiaのGPUを利用する場合に必要なCUDAなどの環境もインストールできるようになっています。 ※ Pythonを使う目的によって(1)、(2)を使い分けてインストールすることになります。参考書籍、WEBサイトなども異なった説明になりますので、混同しないように確認してください。 (3) Google Colaboratory(略称: Google Colab) Google Colab は、ブラウザから Python を実行 できるサービスです。 Google IDを持っていれば、すべての機能は無料で使うことができ、Googleドライブと連携できますので、プログラムをGoogleドライブに保存しておけば、ネット環境がある場所なら自宅でも、外出先でも気が付いた時にプログラムを新規作成、修正することができます。 はじめてPythonを学習する際には最適 です。また、機械学習など重い処理がハイスピードで行える GPU まで無料で使えますので、実用でも十分に使えます。 【最新版】Google Colaboratory とは?  https://blog.kikagaku.co.j